Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression

نویسندگان

چکیده

Diabetes menjadi salah satu penyakit yang mematikan di dunia, termasuk Indonesia. dapat menyebabkan komplikasi banyak bagian tubuh dan secara keseluruhan meningkatkan risiko kematian. Salah cara untuk mendeteksi diabetes adalah dengan memanfaatkan algoritma machine learning. Logistic regression merupakan model klasifikasi dalam learning digunakan analisis klinis. Pada makalah ini, dirancang prediksi menggunakan logistic pada Python IDE deteksi dini memberikan seseorang terindikasi atau tidak berdasarkan data awal diberikan. Eksperimen dilakukan dataset dari Pima Indians Database terdiri atas 768 pasien delapan variabel independen dependen. Exploratory analysis mendapatkan wawasan maksimal dimiliki bantuan statistik mempresentasikannya melalui teknik visual. Beberapa memuat lengkap. Nilai hilang digantikan nilai median setiap variabel. Penanganan terhadap seimbang synthetic minority over-sampling technique (SMOTE) kelas minoritas sampel sintesis. Model dievaluasi confusion matrix memperlihatkan kinerja cukup baik akurasi sebesar 77%, presisi 75%, recall 77% F1-score 76%. Selain itu, ini juga grid search sebagai hyperparameter tuning regression. Kinerja dasar sesudah penerapan diuji dievaluasi. Hasil percobaan bahwa berbasis mampu 82%, 81%, 79%, 80%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi

Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).

متن کامل

Validasi data dengan menggunakan objek lookup pada borland delphi 7.0

s: Developing an application with some tables must concern the validation of input (scpecially in Table Child). In order to maximize the accuracy and input data validation. Its called lookup (took data from other dataset). There are 2 (two) ways to lookup data from Table Parent: 1) Using Objects (DBLookupComboBox & DBLookupListBox), or 2) Arranging The Properties Of Fields Data Type (shown by u...

متن کامل

Structured Learning via Logistic Regression

A successful approach to structured learning is to write the learning objective as a joint function of linear parameters and inference messages, and iterate between updates to each. This paper observes that if the inference problem is “smoothed” through the addition of entropy terms, for fixed messages, the learning objective reduces to a traditional (non-structured) logistic regression problem...

متن کامل

Active Learning for Logistic Regression

ACTIVE LEARNING FOR LOGISTIC REGRESSION Andrew Ian Schein Supervisor: Lyle H. Ungar Which active learning methods can we expect to yield good performance in learning logistic regression classifiers? Addressing this question is a natural first step in providing robust solutions for active learning across a wide variety of exponential models including maximum entropy, generalized linear, loglinea...

متن کامل

Comparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors

Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

سال: 2022

ISSN: ['2460-5719']

DOI: https://doi.org/10.22146/jnteti.v11i2.3586